March 11th 2022, Mauriana Pesaresi Seminar Series

CALIME

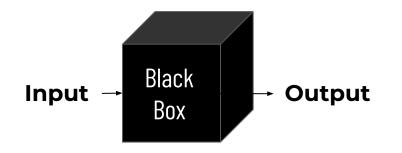
Causality-Aware Local Interpretable Model-Agnostic Explanations

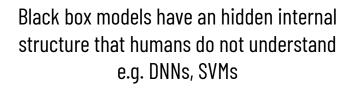
Martina Cinquini martina.cinquini@phd.unipi.it

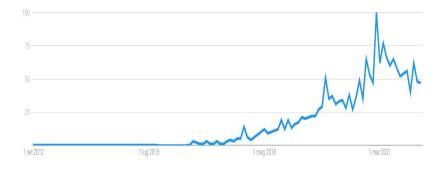
Riccardo Guidotti riccardo.guidotti@phd.unipi.it

What is eXplainable AI (XAI)?

XAI provides explanations for the decisions of Machine Learning models.







Source: Google Trends for "Explainable Al"

Why does XAI matter in Machine Learning?

Benefits

Al systems are increasingly used in sensitive areas

Self-driving cars

2. ML models can perpetuate existing bias

Racial Bias

 Automated business decision making requires reliability and trust

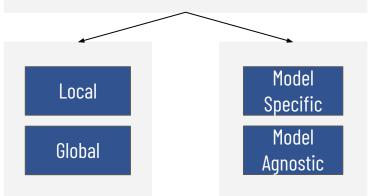
Financial Services

Explainable by Design

Build **interpretable** ML models

Black box Explanation

Derive explanations for **complex** ML models

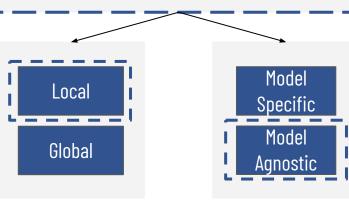


[1] A Survey of Methods for Explaining Black Box Models, Guidotti et al., 2018

Explainable by Design

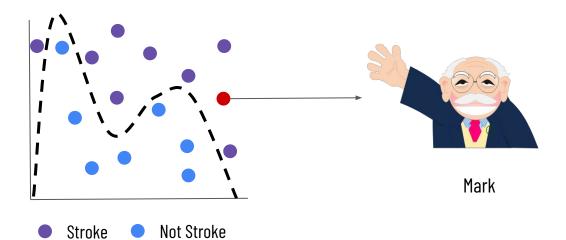
Build **interpretable** ML models

Derive explanations for **complex** ML models



[1] A Survey of Methods for Explaining Black Box Models, Guidotti et al., 2018

Local Interpretable Model-Agnostic Explanations²

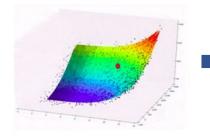


GOAL

Understand why the ML model made a certain prediction

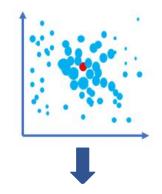
[2] "Why should I trust you?": Explaining the Predictions of Any Classifier, Ribeiro et al., 2016 Slide example from: https://www.youtube.com/watch?v=d6j6bofhj2M

Train a black box model

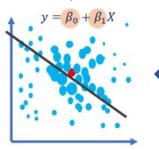


Generate random points

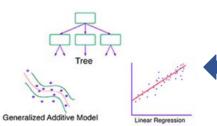
Weight based on distance



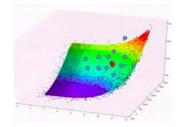
Train the model and use for explanations



Choose an interpretable model

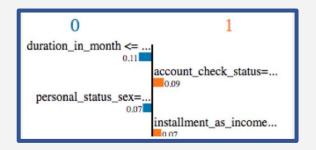


Predict the new points



Explanations

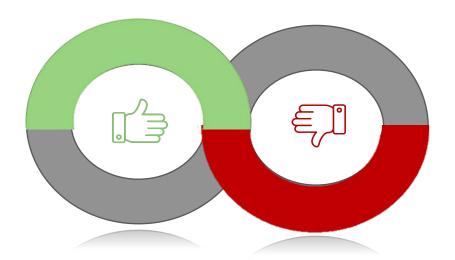
Feature importance



Saliency Maps

It is Model Agnostic

It works on text, images and tabular data



Instability of Explanations

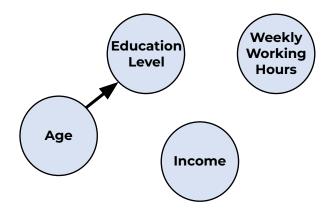
Low Fidelity

It does not consider the causal relationships among input features

Goal: Can the customer get the loan?

Dataset

Age	Income	Education Level	Weekly working hours
24	800	High School	20
28	1300	Bachelor Degree	35



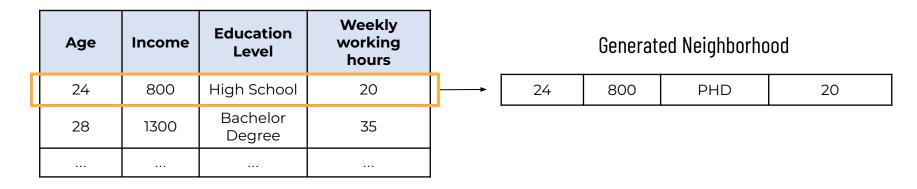
Goal: Can the customer get the loan?

	Age	Income	Education Level	Weekly working hours
BANK DEFT D	24	800	High School	20
	28	1300	Bachelor Degree	35

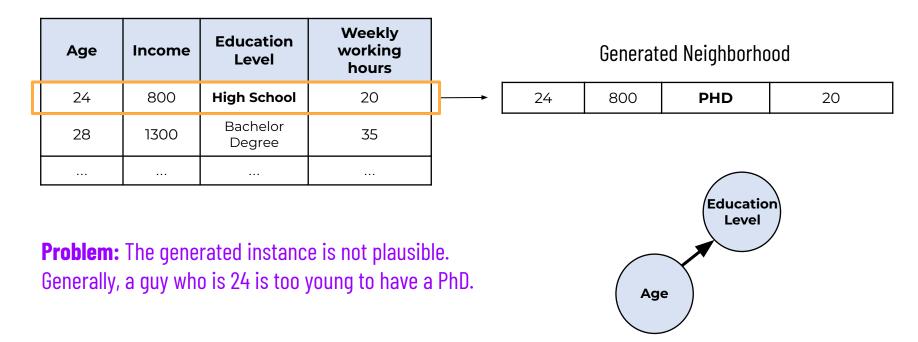
Black Box Prediction: No

Lime Explanation: Low education level is mainly responsible for the denied loan

We inspect the neighborhood generated by LIME of the instance to explain



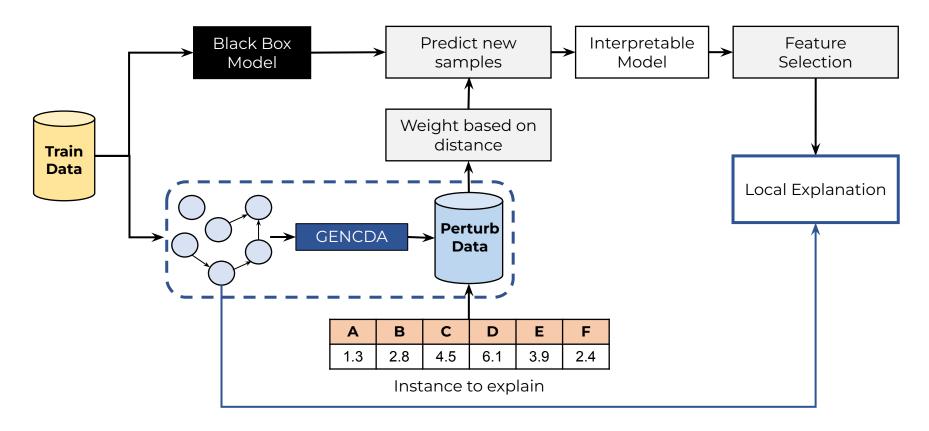
We inspect the neighborhood generated by LIME of the instance to explain



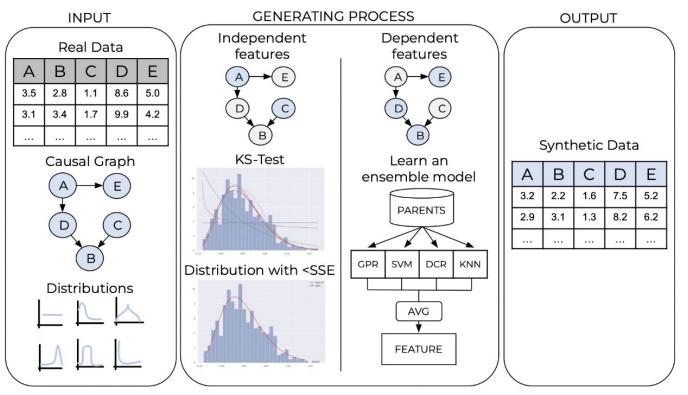
10

CALIME Causality-Aware LIME

CALIME workflow

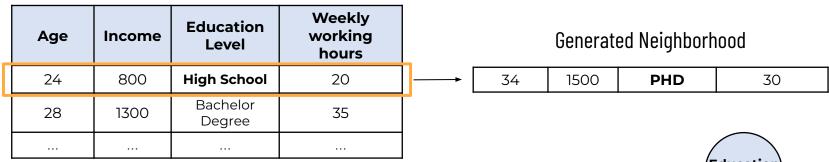


GEnerative Nonlinear Causal Discovery with Apriori³

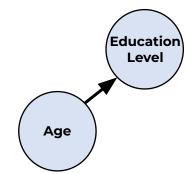


[4] Boosting Synthetic Data Generation with Effective Nonlinear Causal Discovery, Cinquini et al., 2021

We inspect the neighborhood generated by CALIME of the instance to explain



- Education level cannot be changed if age is not changed
- When age is changed also education level must be changed according to the regression model



Experiments

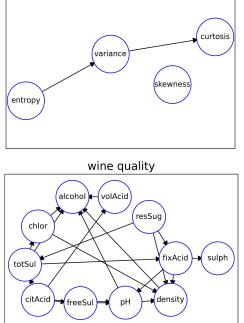
Datasets & DAGs

Statistics and classifiers accuracy

	n	m	RF	NN
banknote	1372	4	0.99	1.0
magic	19020	11	0.92	0.85
wdbc	569	30	0.95	0.92
wine-red	1159	11	0.82	0.70

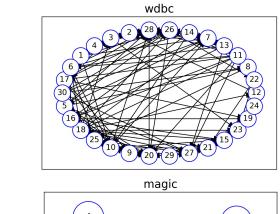
n: # samples

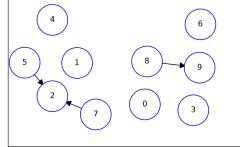
m: # features



banknote

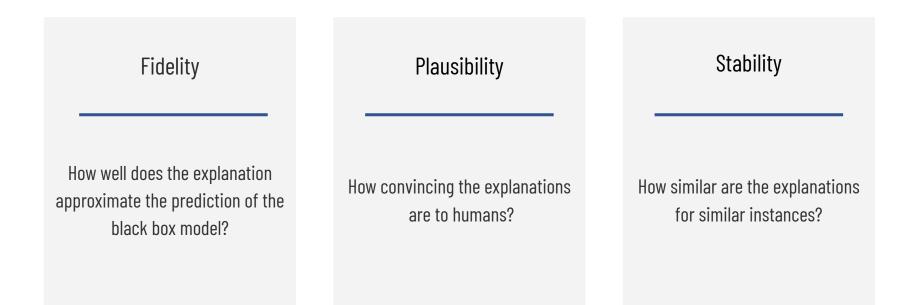
DAGs discovered by CALIME





[4] Source: UCI Repository

Evaluation Measures



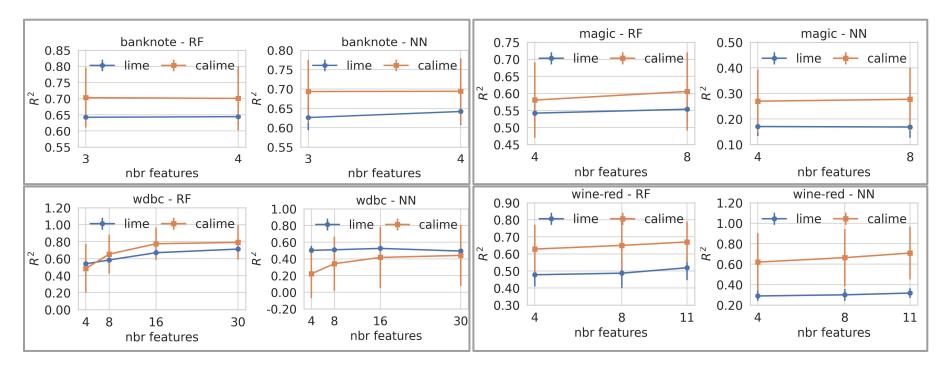
In our setting, we define fidelity in terms of coefficient of determination R^2

$$R_x^2 = 1 - \frac{\sum_{i=1}^N (b(z_i) - r(z_i))^2}{\sum_{i=1}^N (b(z_i) - \hat{y})^2} \quad \text{with} \quad \bar{y} = \frac{1}{N} \sum_{i=1}^N b(z_i)$$

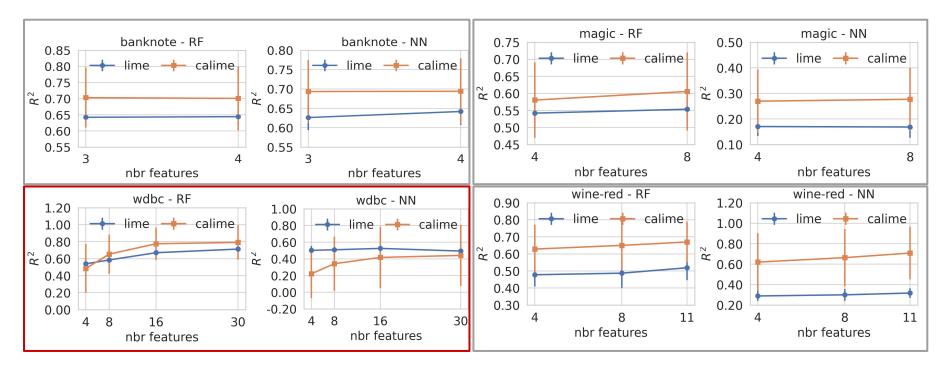
where $z_i \in Z$ is the synthetic neighborhood generated by LIME or CALIME for a certain instance x_i and r is the linear regressor with Lasso regularization trained on Z.

 \mathbb{R}^2 ranges in [-1, 1]:

- 1 indicates that the regression predictions perfectly fit the data
- 0 is obtained by a baseline.



A higher score indicates better fidelity values



A higher score indicates better fidelity values

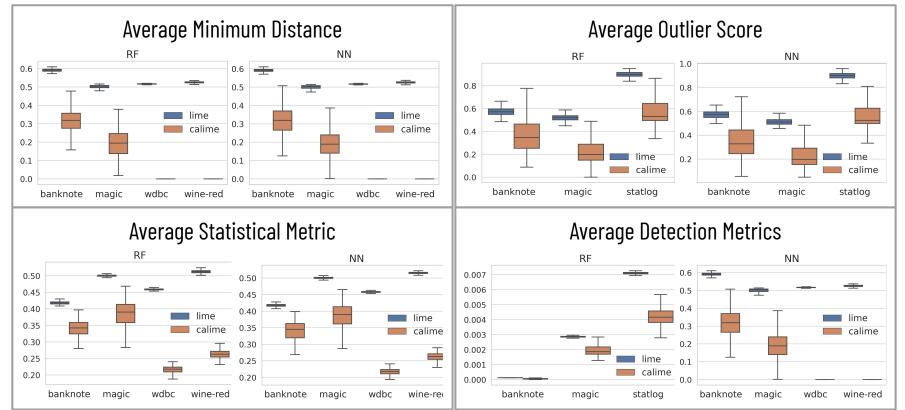
Plausibility

We evaluate the plausibility of the explanations in terms of the goodness of the synthetic datasets locally generated by LIME and CALIME by using the following metrics based on:

Distance	Outlierness	Statistics	Detection
Average Minimum Distance The lower the AMD, the more plausible are the instances in Z.	Average Outlier Score -Local Outlier Factor -Isolation Forest -Angle-Based Outlier D.	Average Statistical Metric -KS Test -Continuous KL Divergence -GM Log Likelihood	Average Detection Metric -Logistic Detector -SVM

Plausibility

Results

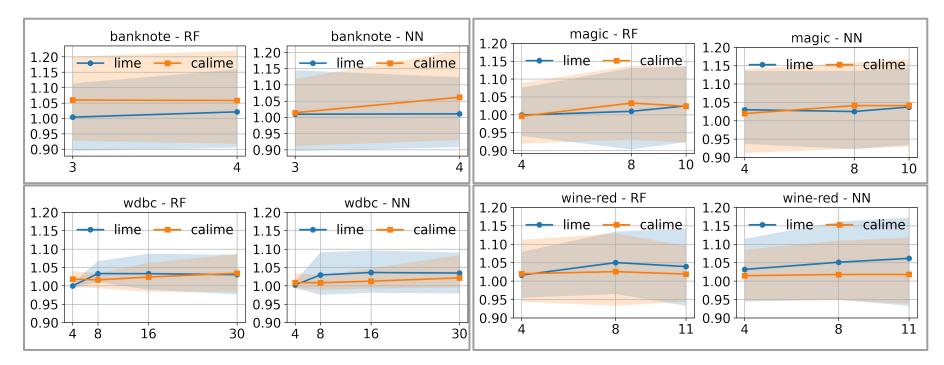


We assess the stability through the local Lipschitz estimation:

$$LLE_{x} = avg_{x_{i} \in \mathcal{N}_{x}^{k}} \frac{\|e_{i} - e\|_{2}}{\|x_{i} - x\|_{2}}$$

where x is the instance to explain and $N_x^k \subset X$ is the k-Nearest Neighborhood of x with the k neighbors selected from the test set.

The lower the LLE, the higher the stability.



The lower the LLE, the higher the stability.

Key takeaways

CALIME is the first black-box explanation methods returning features importance as explanations that directly discover and incorporate causal relationships in the explanation extraction process.

Experiments results show that CALIME overcomes the weaknesses of LIME concerning both the fidelity in mimicking the black-box and the stability of the explanations.

CALIME could strengthen user trust in the AI system. It will be especially useful for high-impact domains such as financial services or healthcare (e.g., therapy planning or patient monitoring).

Key takeaways

Disadvantages:

- it suffers from limitations that are typical of black-box explanation methods returning explanations in the form of features importance, e.g. it is parametric w.r.t the number of features;
- it is only suitable for continuous data due to GENCDA

Future Directions:

- Develop causality aware explanation methods suitable for images and time series working in a similar manner of CALIME;
- Employ the knowledge about causal relationships in the explanation extraction process of other model-agnostic explainers like LORE, SHAP or ANCHORS.

Thank you for your attention!